Adolescent Thalamocortical Inhibition Alters Prefrontal Excitation-Inhibition Balance.

David Petersen, Ricardo Raudales, Ariadna Kim Silva,Christoph Kellendonk,Sarah Canetta

bioRxiv : the preprint server for biology(2024)

引用 0|浏览1
暂无评分
摘要
Adolescent inhibition of thalamo-cortical projections from postnatal day P20-50 leads to long lasting deficits in prefrontal cortex function and cognition in the adult mouse. While this suggests a role of thalamic activity in prefrontal cortex maturation, it is unclear how inhibition of these projections affects prefrontal circuit connectivity during adolescence. Here, we used chemogenetic tools to inhibit thalamo-prefrontal projections in the mouse from P20-35 and measured synaptic inputs to prefrontal pyramidal neurons by layer (either II/III or V/VI) and projection target twenty-four hours later using slice physiology. We found a decrease in the frequency of excitatory and inhibitory currents in layer II/III nucleus accumbens (NAc) and layer V/VI medio-dorsal thalamus projecting neurons while layer V/VI NAc-projecting neurons showed an increase in the amplitude of excitatory and inhibitory currents. Regarding cortical projections, the frequency of inhibitory but not excitatory currents was enhanced in contralateral mPFC-projecting neurons. Notably, despite these complex changes in individual levels of excitation and inhibition, the overall balance between excitation and inhibition in each cell was only changed in the contralateral mPFC projections. This finding suggests homeostatic regulation occurs within subcortically but not intracortical callosally-projecting neurons. Increased inhibition of intra-prefrontal connectivity may therefore be particularly important for prefrontal cortex circuit maturation. Finally, we observed cognitive deficits in the adult mouse using this narrowed window of thalamocortical inhibition (P20-P35).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要