Neural Graph Control Barrier Functions Guided Distributed Collision-avoidance Multi-agent Control.

CoRR(2023)

引用 0|浏览1
暂无评分
摘要
We consider the problem of designing distributed collision-avoidance multi-agent control in large-scale environments with potentially moving obstacles, where a large number of agents are required to maintain safety using only local information and reach their goals. This paper addresses the problem of collision avoidance, scalability, and generalizability by introducing graph control barrier functions (GCBFs) for distributed control. The newly introduced GCBF is based on the well-established CBF theory for safety guarantees but utilizes a graph structure for scalable and generalizable decentralized control. We use graph neural networks to learn both neural a GCBF certificate and distributed control. We also extend the framework from handling state-based models to directly taking point clouds from LiDAR for more practical robotics settings. We demonstrated the efficacy of GCBF in a variety of numerical experiments, where the number, density, and traveling distance of agents, as well as the number of unseen and uncontrolled obstacles increase. Empirical results show that GCBF outperforms leading methods such as MAPPO and multi-agent distributed CBF (MDCBF). Trained with only 16 agents, GCBF can achieve up to 3 times improvement of success rate (agents reach goals and never encountered in any collisions) on <500 agents, and still maintain more than 50% success rates for >1000 agents when other methods completely fail.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要