Controllable orbital angular momentum monopoles in chiral topological semimetals

arxiv(2023)

引用 0|浏览22
暂无评分
摘要
The emerging field of orbitronics aims at generating and controlling currents of electronic orbital angular momentum (OAM) for information processing. Structurally chiral topological crystals could be particularly suitable orbitronic materials because they have been predicted to host topological band degeneracies in reciprocal space that are monopoles of OAM. Around such a monopole, the OAM is locked isotopically parallel or antiparallel to the direction of the electron's momentum, which could be used to generate large and controllable OAM currents. However, OAM monopoles have not yet been directly observed in chiral crystals, and no handle to control their polarity has been discovered. Here, we use circular dichroism in angle-resolved photoelectron spectroscopy (CD-ARPES) to image OAM monopoles in the chiral topological semimetals PtGa and PdGa. Moreover, we also demonstrate that the polarity of the monopole can be controlled via the structural handedness of the host crystal by imaging OAM monopoles and anti-monopoles in the two enantiomers of PdGa, respectively. For most photon energies used in our study, we observe a sign change in the CD-ARPES spectrum when comparing positive and negative momenta along the light direction near the topological degeneracy. This is consistent with the conventional view that CD-ARPES measures the projection of the OAM monopole along the photon momentum. For some photon energies, however, this sign change disappears, which can be understood from our numerical simulations as the interference of polar atomic OAM contributions, consistent with the presence of OAM monopoles. Our results highlight the potential of chiral crystals for orbitronic device applications, and our methodology could enable the discovery of even more complicated nodal OAM textures that could be exploited for orbitronics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要