Cognitive and motor impulsivity in the healthy brain, and implications for eating disorders and obesity: A coordinate-based meta-analysis and systematic review

Giulia Mattavelli, Irene Gorrino, Diana Tornaghi,Nicola Canessa

CORTEX(2024)

引用 0|浏览0
暂无评分
摘要
Alterations in the impulse-control balance, and in its neural bases, have been reported in obesity and eating disorders (EDs). Neuroimaging studies suggest a role of fronto-parietal networks in impulsive behaviour, with evaluation and anticipatory processes additionally recruiting meso-limbic regions. However, whether distinct facets of cognitive and motor impulsivity involve common vs. specific neural correlates remains unclear. We addressed this issue through Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies on delay discounting (DD) and go/no-go (GNG) tasks, alongside conjunction and subtraction analyses. We also performed systematic reviews of neuroimaging studies using the same tasks in individuals with obesity or EDs. ALE results showed consistent activations in the striatum, anterior/posterior cingulate cortex, medial/left superior frontal gyrus and left supramarginal gyrus for impulsive choices in DD, while GNG tasks elicited mainly right-lateralized fronto-parietal activations. Conjunction and subtraction analyses showed: i) common bilateral responses in the caudate nucleus; ii) DD-specific responses in the ventral striatum, anterior/posterior cingulate cortex, left supramarginal and medial frontal gyri; iii) GNG-specific activations in the right inferior parietal cortex. Altered frontolateral responses to both tasks are suggestive of dysfunctional cortico-striatal balance in obesity and EDs, but these findings are controversial due to the limited number of studies directly comparing patients and controls. Overall, we found evidence for distinctive neural correlates of the motor and cognitive facets of impulsivity: the right inferior parietal lobe underpins action inhibition, whereas fronto-striatal regions and the left supramarginal gyrus are related to impulsive decision-making. While showing that further research on clinical samples is required to better characterize the neural bases of their behavioural changes, these findings help refining neurocognitive model of impulsivity and highlight potential translational implications for EDs and obesity treatment. (c) 2023 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Activation likelihood estimation,fMRI,Impulsive decision-making,Action inhibition,Eating disorders,Obesity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要