Effects of carbon-silicon structure on photochemical activity of biochars

Chemosphere(2024)

引用 0|浏览3
暂无评分
摘要
Biochar has raised increasing concerns because of its great environmental impacts. It is known that the photocatalytic property of biochar is related to its carbon component and dissolved black carbon, but the effect of silicon component is ignored, and the effect of silicon and carbon phases was far less studied. This study systematically explored the photochemistry of silicon-rich and silicon-deficient biochar under light irradiation by using hexavalent chromium (Cr(VI)) and sulfadiazine as representative pollutants for photoreduction and photooxidation, respectively. It was found that biochar had photoreduction activity under the enhancement of electron donors, and 80.1% Cr(VI) can be removed by biochar with crystalline silicon and carbon (i.e., RH900) after 12 h irradiation. Meanwhile after low temperature pyrolysis, biochar with amorphous silicon and carbon (i.e., RH600) had great photooxidation capacity, and 71.90% organic pollutant was degraded within 24 h. The reaction was illustrated by transient photocurrent response, and hydroxyl radical generation measurement, and other tests. A new photochemical mechanism of the synergy between silicon and carbon model was proposed to elucidate the redox reactions of pollutants under the light. Graphitic carbon or crystalline silicon formed under high temperature played a role of valence band which was excited under light irradiation and the effect of electron donors to benefit photoreduction, while amorphous silicon formed under low temperature facilitated photooxidation process by increasing reactive oxygen species concentration. This study provided a gist for biochar production and application in the field of photocatalysis, and contributed to the broader understanding of biochar geochemical behavior in natural sunlit system.
更多
查看译文
关键词
photochemical activity,carbon-silicon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要