Bi-layer sizing and design optimization method of propulsion system for electric vertical takeoff and landing aircraft

Mingkai Wang, Guotai Xiaoyang,Ruichen He,Shuguang Zhang, Jintao Ma

ENERGY(2023)

引用 0|浏览6
暂无评分
摘要
Electric vertical takeoff and landing (eVTOL) aircraft is a promising solution for future urban air mobility, but it suffers from insufficient energy and power density as opposed to fossil fuel-based aircraft. This paper proposes a bi-layer design optimization method for electric propulsion systems. To tackle the issue of high-dimension design parameters and multiple performance constraints, the design process is divided into two parameter optimization problems. In the upper layer, only scalar parameters of components are considered to determine a feasible sizing result subject to energy-flow limits. The outcome of this layer further serves as the initial guess of the lower design layer. The constraints of power conservation and conversion among components are taken into account. The optimization is scheduled in a cascaded paradigm that maximizes the total energy efficiency with minimized total weight. The blade-element momentum method is employed to estimate propeller thrust and torque coefficients. The proposed method is applied to a tilt-wing eVTOL. The sizing results shows that the eVTOL mass is reduced by 11.66% as opposed to the benchmark method. The proposed method provides a generic framework for sizing and design optimization independent of configuration and mission profiles.
更多
查看译文
关键词
Aircraft design,Optimization,Vertical takeoff and landing,Electric propulsion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要