Probabilistic computing with NbOx metal-insulator transition-based self-oscillatory pbit

NATURE COMMUNICATIONS(2023)

引用 0|浏览0
暂无评分
摘要
Energy-based computing is a promising approach for addressing the rising demand for solving NP-hard problems across diverse domains, including logistics, artificial intelligence, cryptography, and optimization. Probabilistic computing utilizing pbits, which can be manufactured using the semiconductor process and seamlessly integrated with conventional processing units, stands out as an efficient candidate to meet these demands. Here, we propose a novel pbit unit using an NbOx volatile memristor-based oscillator capable of generating probabilistic bits in a self-clocking manner. The noise-induced metal-insulator transition causes the probabilistic behavior, which can be effectively modeled using a multi-noise-induced stochastic process around the metal-insulator transition temperature. We demonstrate a memristive Boltzmann machine based on our proposed pbit and validate its feasibility by solving NP-hard problems. Furthermore, we propose a streamlined operation methodology that considers the autocorrelation of individual bits, enabling energy-efficient and high-performance probabilistic computing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要