Norm attaining vectors and Hilbert points

Konstantinos Bampouras,Ole Fredrik Brevig

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
Let $H$ be a Hilbert space that can be embedded as a dense subspace of a Banach space $X$ such that the norm of the embedding is equal to $1$. We consider the following statements for a nonzero vector $\varphi$ in $H$: (A) $\|\varphi\|_X = \|\varphi\|_H$. (H) $\|\varphi+f\|_X \geq \|\varphi\|_X$ for every $f$ in $H$ such that $\langle f, \varphi \rangle =0$. We use duality arguments to establish that (A) $\implies$ (H), before turning our attention to the special case when the Hilbert space in question is the Hardy space $H^2(\mathbb{T}^d)$ and the Banach space is either the Hardy space $H^1(\mathbb{T}^d)$ or the weak product space $H^2(\mathbb{T}^d) \odot H^2(\mathbb{T}^d)$. If $d=1$, then the two Banach spaces are equal and it is known that (H) $\implies$ (A). If $d\geq2$, then the Banach spaces do not coincide and a case study of the polynomials $\varphi_\alpha(z) = z_1^2 + \alpha z_1 z_2 + z_2^2$ for $\alpha\geq0$ illustrates that the statements (A) and (H) for the two Banach spaces describe four distinct sets of functions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要