Mitigation of Benzene-Induced Haematotoxicity in Sprague Dawley Rats through Plant-Extract-Loaded Silica Nanobeads

Toxics(2023)

引用 0|浏览5
暂无评分
摘要
Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.
更多
查看译文
关键词
Lamiaceae plant extracts, mesoporous silica nanoparticles, in vivo study, targeted drug delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要