Exhaled Breath Analysis Using Selected Ion Flow Tube Mass Spectrometry and Disease Severity in Heart Failure

Metabolites(2023)

引用 0|浏览12
暂无评分
摘要
Exhaled breath volatile organic compounds (VOCs) are elevated in heart failure (HF). The ability of VOCs to predict long term cardiovascular mortality and morbidity has not been independently verified. In 55 patients admitted with acute decompensated heart failure (ADHF), we measured exhaled breath acetone and pentane levels upon admission and after 48 h of diuresis. In a separate cohort of 51 cardiac patients undergoing cardiopulmonary exercise testing (CPET), we measured exhaled breath acetone and pentane levels before and at peak exercise. In the ADHF cohort, admission acetone levels correlated with lower left ventricular ejection fraction (LVEF, r = -0.297, p = 0.035). Greater weight loss with diuretic therapy correlated with a greater reduction in both acetone levels (r = -0.398, p = 0.003) and pentane levels (r = -0.309, p = 0.021). In patients with above-median weight loss (>= 4.5 kg), patients demonstrated significantly greater percentage reduction in acetone (59% reduction vs. 7% increase, p < 0.001) and pentane (23% reduction vs. 2% reduction, p = 0.008). In the CPET cohort, admission acetone and pentane levels correlated with higher VE/VCO2 (r = 0.39, p = 0.005), (r = 0.035, p = 0.014). However, there were no significant correlations between baseline or peak exercise acetone and pentane levels and peak VO2. In longitudinal follow-up with a median duration of 33 months, patients with elevated exhaled acetone and pentane levels experienced higher composite adverse events of death, ventricular assist device implantation, or orthotopic heart transplantation. In patients admitted with ADHF, higher exhaled breath acetone levels are associated with lower LVEF and poorer outcomes, and greater reductions in exhaled breath acetone and pentane tracked with greater weight loss. Exhaled acetone and pentane may be novel biomarkers in heart failure worthy of future investigation.
更多
查看译文
关键词
breath analysis,mass spectrometry,heart failure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要