Unraveling the Complexities of Groundwater Salinization in Coastal Environments: Insights from Laizhou Bay’s Eastern Coast, China

Water(2023)

引用 0|浏览1
暂无评分
摘要
Coastal areas have made substantial contributions to global economic development but are plagued by challenges such as groundwater salinization. Groundwater serves as the primary source for drinking, industrial, and domestic purposes in these coastal areas. Therefore, understanding the causes and processes of groundwater salinization holds paramount significance for effective groundwater management. The coastal area of Laizhou Bay in northern China serves as a quintessential example of such a scenario. With substantial groundwater extraction and severe groundwater salinization issues, it exacerbates the disparity between water-resource supply and demand. Currently, our understanding of the processes and influencing factors related to groundwater salinization in this region remains limited. In this study, employing hydrochemical and stable chlorine isotope analyses on 35 groundwater and seawater samples, an in-depth investigation into the complex mechanisms underlying groundwater salinization in the Quaternary aquifers of the eastern coastal plain of Laizhou Bay was conducted. The test results of the samples indicate that brine and saline groundwater are primarily of the Na-Cl type, exhibiting a hydrochemical composition similar to that of seawater. Brackish groundwater exhibits a diverse hydrochemical composition. The hydrogen and oxygen isotope characteristics of brackish and fresh groundwater resemble atmospheric precipitation, while brine, seawater, and saline groundwater show hydrogen and oxygen isotope depletion. Compared to seawater, brine exhibits significant δ37Cl depletion. The analysis of the test results reveals that the formation of brine aquifers results from a complex interplay of climate change, tectonic movements, and sea–land evolution, involving lagoon development during seawater regression, salt concentration through evaporation, and subsequent water–rock interactions. The genesis of saline groundwater involves a complex interplay of brine–seawater mixing, significant evaporation, and potential input of fresh groundwater from atmospheric precipitation and river sources. The formation of brackish groundwater is predominantly influenced by atmospheric precipitation, and agricultural activities, with significant variations in NO3− concentrations attributed to varying intensities of fertilizer application in the northern plain area. These insights contribute to a deeper understanding of the origins of groundwater and can inform the development of policies for groundwater protection in this area.
更多
查看译文
关键词
hydrochemistry, hydrogen and oxygen isotope, chlorine isotope, groundwater salinization, Laizhou Bay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要