Improvement of interleaving Aramid pulp micro-fibers on compressive strengths of carbon fiber reinforced polymers with and without impact

CHINESE JOURNAL OF AERONAUTICS(2023)

引用 0|浏览2
暂无评分
摘要
Compressive strengths and elastic moduli of Carbon Fiber Reinforced Polymer (CFRP) composites can be noticeably improved by multiple ultra-thin interlays with non-woven Aramid Pulp (AP) micro/nano-fibers. 10-ply CFRP specimens with 0, 2, 4, 6, 8 g/m2 AP were tested under uniaxial compression. Those flexible AP fibers, filling the resin-rich regions and further constructing the fiber bridging at the ply interfaces, can effectively suppress delamination growth and lead to very good improvements both in the compressive strength and the elastic modulus. The CFRP specimen with an optimum interlay thickness has a distinct shear failure mode instead of the typical delamination cracking along the direction of continuous carbon fibers. Compressive Strengths After Impacts (CAI) of 12.35 J were also measured, up to 90% improvement in CAI has been observed. It is concluded those ultra-thin interlays of non-woven AP micro/nano-fibers are beneficial to design and manufacture "high strength" CFRP composites.(c) 2023 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Compressive strength,Carbon Fiber Reinforced Polymer (CFRP),Aramid pulp,Interleaving,Interfacial reinforcing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要