Physiological and transcriptomic changes drive robust responses in Paenarthrobacter sp. AT5 to co-exposure of sulfamethoxazole and atrazine

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 0|浏览4
暂无评分
摘要
Agricultural waterways are often contaminated with herbicide and antibiotic residues due to the widespread use of these chemicals in modern agriculture. The search for resistant bacterial strains that can adapt to and degrade these mixed contaminants is essential for effective in situ bioremediation. Herein, by integrating chemical and transcriptomic analyses, we shed light on mechanisms through which Paenarthrobacter sp. AT5, a well-known atrazine-degrading bacterial strain, can adapt to sulfamethoxazole (SMX) while degrading atrazine. When exposed to SMX and/or atrazine, strain AT5 increased the production of extracellular polymeric substances and reactive oxygen species, as well as the rate of activity of antioxidant enzymes. Atrazine and SMX, either alone or combined, increased the expression of genes involved in antioxidant responses, multidrug resistance, DNA repair, and membrane transport of lipopolysaccharides. Unlike atrazine alone, co-exposure with SMX reduced the
更多
查看译文
关键词
Atrazine,Sulfamethoxazole,Biodegradarion,Transcriptome,Extracellular polymeric substances,Reactive oxygen species
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要