Improvement of kefir fermentation on rheological and microstructural properties of soy protein isolate gels

Food Research International(2023)

引用 0|浏览3
暂无评分
摘要
Soy protein isolate (SPI) has become a promising plant-based material as an animal protein products alternative. However, its application was limited due to the weak gelling properties. To investigate the effect of kefir fermentation on SPI gels properties, SPI-polysaccharide gels was produced by unfermented and kefir-fermented SPI using different concentration of KGM, chitosan, and calcium chloride in this study. Characterization of fermented SPI gels showed that fermentation by kefir grains can be applied to improve the textural strength, mechanical structure, and thermal characteristics of SPI gels. Compared to unfermented SPI gels, the water-holding capacity was remarkably enhanced to 63.11% and 65.71% in fermented SPI-chitosan gels. Moreover, the hardness of fermented SPI-KGM gels were significantly increased to 13.43 g and 27.11 g. And the cohesiveness and resilience of fermented-KGM gels were also improved than unfermented samples. Results of rheological characterization and thermogravimetric analysis revealed the strengthened mechanical features and higher thermal stability of fermented SPI gels. Additionally, the main role of hydrophobic interactions and secondary structure variations of SPI gels were demonstrated by intermolecular force measurements, Fouriertransform infrared spectroscopy, and X-ray diffraction. Moreover, the network structure was observed more compact and homogeneous performed by microstructural images in fermented SPI gels. Therefore, this research provided a novel approach combining multi-species fermentation with protein gelation to prepare SPI gel materials with improved nutrition and structural properties.
更多
查看译文
关键词
Soy protein isolate gel,Kefir grains,Fermentation,Polysaccharides,Mechanical stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要