Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览4
暂无评分
摘要
Heavy metal pollution (HMP) from mining operations severely threatens soil ecosystems and human health. Identifying the sources of soil heavy metals (HMs) and assessing source-specific risks are critical for developing effective risk mitigation strategies. In this study, a combination of methodologies including PMF, Monte Carlo analysis, soil pollution risk index, and a human health risk assessment model were utilized to investigate soil HM risks in a typical ancient mining area in Daye City, China, considering both environmental pollution and human health impacts. Cu emerged as the most significant soil pollution risk, whereas As posing the highest health risk. About 48.44 % of the multi-element integrated soil pollution risk has escalated to the heavy level. Furthermore, around 22.42 % of the non-carcinogenic risk (NCR) and 9.53 % of the carcinogenic risk (CR) exceeded unacceptable thresholds (THI > 1 for NCR and TCR > 1E-4 for CR). The PMF model identified four distinct sources: the smelting industry, traffic emissions, a combination of agricultural and natural factors, and mining activities. The mixed agricultural and natural source significantly impacted health risks, contributing 42.17 % to NCR and 53.88 % to CR, followed by the mining source, contributing 31.67 % to NCR and 24.07 % to CR. Interestingly, the mining source contributed the highest soil pollution risk at 42.45 %, while the mixed agricultural and natural source exhibited the lowest at 16.33 %. Furthermore, the study explored source-specific risk components by evaluating the contributions of different sources to specific elements. The mining source was identified as the focus for soil HMP control, followed by the mixed agricultural and natural source. Overall, this study provided an in-depth analysis of soil heavy metal risks in mining areas from the source apportionment perspective, which broadened the research framework of soil heavy metal source analysis and risk assessment, potentially providing scientific guidance for managing regional soil HMP.
更多
查看译文
关键词
Probabilistic risk assessment,Heavy metal contamination,Source apportionment,Monte Carlo simulation,Mining areas
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要