Color-tunable luminescence based on the efficient energy transfer of a Tm-Dy system for optical thermometry and white LED lighting

DALTON TRANSACTIONS(2023)

引用 0|浏览1
暂无评分
摘要
The development of phosphors with color-tunable luminescence including white emission is at the forefront of lighting and display technologies. Herein, Dy3+,Tm3+ single-doped or co-doped K3Y(PO4)2 phosphors are synthesized through the solid-state reaction method. By properly adjusting the ratio of Dy3+,Tm3+ co-doping concentrations, color-tunable luminescence from blue to yellow, including white luminescence, is realized under 359 nm excitation. The mechanism of energy transfer between Tm3+ and Dy3+ is further investigated via measuring the luminescence decay curve. Based on efficient energy transfer from Tm3+ to Dy3+, the emission of Dy3+ exhibits an abnormal thermal enhancement phenomenon as the temperature increases. The optical thermometry behaviors of various emission combinations for the Dy3+,Tm3+ co-doped system are analyzed. The maximum sensitivity can be obtained as a constant of 4.8 x 10-3 K-1, which is conducive to improve the measurement accuracy of optical temperature sensing at high temperatures. Furthermore, we also demonstrate the applicability of K3Y(PO4)2:Tm3+,Dy3+ phosphors in white LEDs, providing proof-of-concept for the lighting and display fields. Dy3+,Tm3+ co-doped K3Y(PO4)2 phosphors with high efficiency energy transfer can achieve color-tunable luminescence and have potential application prospects in the fields of optical temperature measurement and white LED lighting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要