A Lightweight Knowledge-Distillation-Based Model for the Detection and Classification of Impacted Mandibular Third Molars

Yujie Lei, Xiang Chen, Yunlong Wang,Rong Tang,Baoping Zhang

APPLIED SCIENCES-BASEL(2023)

引用 0|浏览0
暂无评分
摘要
The extraction of impacted third molars is one of the most common dental operations. When the impacted third molar is extracted, the operation plan is generally different because of the different impacted positions of the tooth. Therefore, judging the impacted type of the third molar is the basis of the third molar extraction operation. At present, oral health professionals usually analyze panoramic radiographs to determine the types of impacted third molars, but the diagnosis is easily affected by oral health professionals' subjective consciousnesses. Computer vision technology can help doctors analyze medical images faster and more accurately, so it is very desirable to use computer vision to detect and classify the impacted third molars. Based on the panoramic radiographs of the School of Stomatology, Lanzhou University, this paper establishes an object detection dataset containing six types of impacted third molars. On the basis of this dataset, the lightweight third molar impacted detection and classification model is studied in this paper. This study introduces the method of knowledge distillation on the basis of YOLOv5s and uses YOLOv5x as the teacher's model to guide YOLOv5s, which not only ensures the light weight of the model but also improves the accuracy of the model. Finally, the YOLOv5s-x model is obtained. The experimental results show that the introduction of knowledge distillation effectively improves the accuracy of the model while ensuring its light weight, the mAP of YOLOv5s-x is increased by 2.9% compared with the original model, and the amount of parameters and calculations is also reduced to a certain extent. Compared with mainstream object detection networks, including YOLOv8, YOLOv5s-x also has certain advantages, which can provide oral health professionals with better impacted third molar detection and classification services.
更多
查看译文
关键词
knowledge distillation,computer vision,third molar,classification,panoramic radiograph
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要