Sustainable Apple Disease Management Using an Intelligent Fine-Tuned Transfer Learning-Based Model

SUSTAINABILITY(2023)

引用 0|浏览4
暂无评分
摘要
Apple foliar diseases are a group of diseases that affect the leaves of apple trees. These diseases can significantly impact apple tree health and fruit yield. Ordinary apple foliar diseases include frog_eye_leaf_spots, powdery mildew, rust, apple scabs, etc. Early detection of these diseases is important for effective apple crop management to increase the yield of apples. Therefore, this research proposes a fine-tuned EfficientNetB3 model for the quick and precise assessment of these apple foliar diseases. A dataset containing 23,187 RGB images of eleven different apple foliar diseases is used for experimentation. The proposed model is compared with four transfer learning models, i.e., InceptionResNetV2, ResNet50, AlexNet, and VGG16. All models are fine-tuned by adding different layers like the global average pooling layer, flatten layer, dropout layer, and dense layer. The performance of these five models is compared in terms of the precision, recall, accuracy, and F1-score. The EfficientNetB3 outperformed the other models in terms of all performance parameters. The best model is further optimized with the help of three optimizers, i.e., Adam, SGD, and Adagrad. The proposed model achieved the precision, recall, and F1-score values of 86%, 88%, and 86%, respectively, at 32 batch sizes and 10 epochs. This research formulated a model for an apple foliar disease diagnosis within sustainable agriculture.
更多
查看译文
关键词
plant pathology, multi-class classification, foliar disease, optimization, EfficientNetB3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要