Visualising emergent phenomena at oxide interfaces

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
Knowledge of atomic-level details of structure, chemistry, and electronic states is paramount for a comprehensive understanding of emergent properties at oxide interfaces. We utilise a novel methodology based on atomic-scale electron energy loss spectroscopy (EELS) to spatially map the electronic states tied to the formation of a two-dimensional electron gas (2DEG) at the prototypical non-polar/polar $TiO_2$/$LaAlO_3$ interface. Combined with differential phase contrast analysis we directly visualise the microscopic locations of ions and charge and find that 2DEG states and $Ti^{3+}$ defect states exhibit different spatial distributions. Supported by density functional theory (DFT) and inelastic scattering simulations we examine the role of oxygen vacancies in 2DEG formation. Our work presents a general pathway to directly image emergent phenomena at interfaces using this unique combination of arising microscopy techniques with machine learning assisted data analysis procedures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要