Sound-mediated nucleation and growth of amyloid fibrils

biorxiv(2024)

引用 0|浏览2
暂无评分
摘要
Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry. Significance Statement Understanding how and why proteins form amyloid fibrils is crucial for research into various diseases, including neurodegeneration. Ultrasound is routinely used in research settings as a tool for generating amyloid seeds (nucleation sites) from mature fibrils, which accelerate the rate of fibril growth. However, ultrasound can have various effects on aqueous media including temperature, extreme shear, and free radicals. Here we show that when the ultrasound parameters are precisely adjusted, they can be utilized as a tool for amyloid growth directly from the natively folded monomers. Thus, it is possible to induce minor changes in the folding of proteins, which trigger nucleation and accelerate amyloid growth. This knowledge lays the foundation for the potential use of sound in protein chemistry. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要