An Investigation of Multi-feature Extraction and Super-resolution with Fast Microphone Arrays

Eric T. Chang, Runsheng Wang, Peter Ballentine,Jingxi Xu,Trey Smith,Brian Coltin,Ioannis Kymissis,Matei Ciocarlie

arxiv(2023)

引用 0|浏览7
暂无评分
摘要
In this work, we use MEMS microphones as vibration sensors to simultaneously classify texture and estimate contact position and velocity. Vibration sensors are an important facet of both human and robotic tactile sensing, providing fast detection of contact and onset of slip. Microphones are an attractive option for implementing vibration sensing as they offer a fast response and can be sampled quickly, are affordable, and occupy a very small footprint. Our prototype sensor uses only a sparse array (8-9 mm spacing) of distributed MEMS microphones (<$1, 3.76 x 2.95 x 1.10 mm) embedded under an elastomer. We use transformer-based architectures for data analysis, taking advantage of the microphones' high sampling rate to run our models on time-series data as opposed to individual snapshots. This approach allows us to obtain 77.3% average accuracy on 4-class texture classification (84.2% when excluding the slowest drag velocity), 1.8 mm mean error on contact localization, and 5.6 mm/s mean error on contact velocity. We show that the learned texture and localization models are robust to varying velocity and generalize to unseen velocities. We also report that our sensor provides fast contact detection, an important advantage of fast transducers. This investigation illustrates the capabilities one can achieve with a MEMS microphone array alone, leaving valuable sensor real estate available for integration with complementary tactile sensing modalities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要