Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides

Communications Physics(2024)

引用 0|浏览11
暂无评分
摘要
Migdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional superconductors from first principles. However, widely used implementations assume a constant density of states around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here, we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full electronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce computational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the power of our implementation by applying it to the sodalite-like clathrates YH 6 and CaH 6 , and to the covalently-bonded H 3 S and D 3 S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi level in doped H 3 S and BaSiH 8 within the full-bandwidth treatment compared to the constant-density-of-states approximation. Our findings highlight the importance of this advanced treatment in such complex materials.
更多
查看译文
关键词
anisotropic,full-bandwidth,migdal-eliashberg
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要