Modulating Charge Transfer Pathways to Enhance Photocatalytic Performance of the Metal-Organic Layer Nanosheet.

ACS applied materials & interfaces(2023)

引用 0|浏览1
暂无评分
摘要
Two-dimensional metal-organic layer (MOL) nanosheets, as nonhomogeneous catalysts, show better optical activity in the field of photocatalysis due to their unique structural advantages. Current research focuses on how to modify the structure of 2D nanosheets by means of crystal engineering to modulate the intralayer electron transfer pathway and systematically investigate the impacts of size effect and electron transfer pathway on the energy utilization efficiency of crystalline materials. In the present work, a triple lophine-derived ligand was designed and prepared, which exhibits a large π-conjugation system and multiple D-A (D: donor, A: acceptor) electron transfer pathways. 2D MOL constructed with Cd ions can be exfoliated by physical sonication to obtain double-walled 2D MOL nanosheets. Compared with the bulk crystalline material, the 2D nanosheets exhibit better photovoltaic properties. Benefiting from the excellent structural advantages, 2D MOL nanosheets could be used as photocatalysts for a variety of aerobic oxidation reactions under mild conditions (10 W white LED, room temperature), such as the trifluoromethylation of coumarins, the synthesis of benzimidazole derivatives from aromatic diamines and aromatic aldehydes, and the preparation of 2,4,6-triarylpyridine derivatives, all with high conversion rates and selectivity (yield typically greater than 88%). The related results illustrate that the introduction of the photoactive triple-lophine unit into 2D MOL nanosheets can effectively modulate the electron transport mode and enhance energy utilization, which provides a new research idea for the development of nonhomogeneous photocatalysts aimed at the applications of visible light-driven organic conversion.
更多
查看译文
关键词
photocatalytic performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要