Dynamic feature splicing for few-shot rare disease diagnosis.

Medical image analysis(2023)

引用 0|浏览6
暂无评分
摘要
Annotated images for rare disease diagnosis are extremely hard to collect. Therefore, identifying rare diseases under a few-shot learning (FSL) setting is significant. Existing FSL methods transfer useful and global knowledge from base classes with abundant training samples to enrich features of novel classes with few training samples, but still face difficulties when being applied to medical images due to the complex lesion characteristics and large intra-class variance. In this paper, we propose a dynamic feature splicing (DNFS) framework for few-shot rare disease diagnosis. Under DNFS, both low-level features (i.e., the output of three convolutional blocks) and high-level features (i.e., the output of the last fully connected layer) of novel classes are dynamically enriched. We construct the position coherent DNFS (P-DNFS) module to perform low-level feature splicing, where a lesion-oriented Transformer is designed to detect lesion regions. Thus, novel-class channels are replaced by similar base-class channels within the detected lesion regions to achieve disease-related feature enrichment. We also devise a semantic coherent DNFS (S-DNFS) module to perform high-level feature splicing. It explores cross-image channel relations and selects base-class channels with semantic consistency for explicit knowledge transfer. Both low-level and high-level feature splicings are performed dynamically and iteratively. Consequently, abundant spliced features are generated for disease diagnosis, leading to more accurate decision boundary and improved diagnosis performance. Extensive experiments have been conducted on three medical image classification datasets. Our results suggest that the proposed DNFS achieves superior performance against state-of-the-art approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要