IKVAV peptide-containing hydrogel decreases fibrous scar after spinal cord injury by inhibiting fibroblast migration and activation.

Tao Jiang,Shitong Li, Benchang Xu,Kun Liu,Tong Qiu,Honglian Dai

Behavioural brain research(2023)

引用 0|浏览0
暂无评分
摘要
Fibrous scar is one of the major factors that hinder functional recovery in patients with spinal cord injury (SCI). Studies have shown that the laminin α1 peptide chain ile-les-val-ala-Val (IKVAV) promoted axonal growth and motor function recovery in rats after SCI. However, whether IKVAV could ameliorate SCI via reducing the formation of fibrous scar was not clear. A SCI model was constructed by transecting the rat spinal cord with a scalpel and implanting poly (N-propan-2-ylprop-2-enamide) (PNIPAM)-b-poly (AC-PEG-COOH) (PNPP) or PNIPAM-b-poly (AC-PEG-IKVAV) (PNPP-IKVAV) hydrogel. 14 days later hematoxylin-eosin staining and immunohistochemical staining were used to assess the effect of PNPP-IKVAV on scar formation. The effect of PNPP-IKVAV on endoplasmic reticulum (ER) stress was investigated by immunohistochemical staining. NIH-3T3 cells were used for in vitro scratching experiments and a transforming growth factor 1 (TGF-β1) activation model was constructed to assess the role of PNPP-IKVAV. In this study, PNPP-IKVAV inhibited fibroblast migration and suppressed TGF-β1 activation and ER stress (ERS) to reduce the extracellular matrix secretion by fibroblasts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要