Isotopic Evidence for Microbial Nitrogen Cycling in a Glacier Interior of High-Mountain Asia.

Environmental science & technology(2023)

引用 0|浏览17
暂无评分
摘要
Glaciers are now acknowledged as an important biome globally, but biological processes in the interior of the glacier (englacial) are thought to be slow and to play only a minor role in biogeochemical cycles. In this study, we demonstrate extensive, microbially driven englacial nitrogen cycling in an Asian glacier using the stable isotopes (δN, δO, and ΔO values) of nitrate. Apparent decreases in ΔO values of nitrate in an 8 m shallow firn core from the accumulation area indicate that nitrifiers gradually replaced ∼80% of atmospheric nitrate with nitrate from microbial nitrification on a decadal scale. Nitrate concentrations did not increase with depth in this core, suggesting the presence of nitrate sinks by microbial assimilation and denitrification within the firn layers. The estimated englacial metabolic rate using isotopic mass balance was classified as growth metabolism, which is approximately 2 orders of magnitude more active than previously known cold-environment metabolisms. In a 56 m ice core from the interior of the ablation area, we found less nitrification but continued microbial nitrate consumption, implying that organic matter is microbially accumulated over centuries before appearing on the ablating surface. Such englacial microbial products may support supraglacial microbes, potentially promoting glacial darkening and melting. With predicted global warming and higher nitrogen loads, englacial nutrient cycling and its roles may become increasingly important in the future.
更多
查看译文
关键词
microbial nitrogen cycling,glacier interior,isotopic evidence,high-mountain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要