Experimental and theoretical assessment of native oxide in the superconducting TaN

V. Quintanar-Zamora, M. Cedillo-Rosillo, O. Contreras-López, C. Corona-García, A. Reyes-Serrato,R. Ponce-Pérez, J. Guerrero-Sánchez,J. A. Díaz

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
In this manuscript, we show through an experimental-computational proof of concept the native oxide formation into superconducting TaN films. First, TaN was synthesized at an ultra-high vacuum system by reactive pulsed laser deposition and characterized in situ by X-ray photoelectron spectroscopy. The material was also characterized ex situ by X-ray diffraction, transmission electron microscopy, and the four-point probe method. It was detected that TaN contained considerable oxygen impurities (up to 26 %O) even though it was grown in an ultra-high vacuum chamber. Furthermore, the impurified TaN evidence a face-centered cubic crystalline structure only and exhibits superconductivity at 2.99 K. To understand the feasibility of the native oxide in TaN, we study the effect of incorporating different amounts of O atoms in TaN using ab-initio calculations. A thermodynamic stability analysis shows that a TaOxN1-x model increases its stability as oxygen is added, demonstrating that oxygen may always be present in TaN, even when obtained at ultra-high vacuum conditions. All analyzed models exhibit metallic behavior. Charge density difference maps reveal that N and O atoms have a higher charge density redistribution than Ta atoms. The electron localization function maps and line profiles indicate that Ta-O and Ta-N bonds are mainly ionic. As expected, stronger ionic behavior is observed in the Ta-O bonds due to the electronegativity difference between O and N atoms. Recent evidence points to superconductivity in bulk TaO, confirming the asseverations of superconductivity in our samples. The results discussed here highlight the importance of considering native oxide when reporting superconductivity in TaN films since the TaO regions formed in the compound may be key to understanding the different critical temperatures reported in the literature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要