Magnetically-targetable outer-membrane vesicles for sonodynamic eradication of antibiotic-tolerant bacteria in bacterial meningitis.

Biomaterials(2023)

引用 1|浏览11
暂无评分
摘要
Treatment of acute bacterial meningitis is difficult due to the impermeability of the blood-brain barrier, greatly limiting the antibiotic concentrations that can be achieved in the brain. Escherichia coli grown in presence of iron-oxide magnetic nanoparticles secrete large amounts of magnetic outer-membrane vesicles (OMVs) in order to remove excess Fe from their cytoplasm. OMVs are fully biomimetic nanocarriers, but can be inflammatory. Here, non-inflammatory magnetic OMVs were prepared from an E. coli strain in which the synthesis of inflammatory lipid A acyltransferase was inhibited using CRISPR/Cas9 mediated gene knockout. OMVs were loaded with ceftriaxone (CRO) and meso-tetra-(4-carboxyphenyl)porphine (TCPP) and magnetically driven across the blood-brain barrier for sonodynamic treatment of bacterial meningitis. ROS-generation upon ultrasound application of CRO- and TCPP-loaded OMVs yielded similar ROS-generation as by TCPP in solution. In vitro, ROS-generation by CRO- and TCPP-loaded OMVs upon ultrasound application operated synergistically with CRO to kill a hard-to-kill, CRO-tolerant E. coli strain. In a mouse model of CRO-tolerant E. coli meningitis, CRO- and TCPP-loaded OMVs improved survival rates and clinical behavioral scores of infected mice after magnetic targeting and ultrasound application. Recurrence did not occur for at least two weeks after arresting treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要