Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra

ACS PHOTONICS(2024)

引用 0|浏览8
暂无评分
摘要
Monolayers of transition metal dichalcogenides (TMDCs) are direct-gap semiconductors with strong light-matter interactions featuring tightly bound excitons, while plasmonic crystals (PCs), consisting of metal nanoparticles that act as meta-atoms, exhibit collective plasmon modes and allow one to tailor electric fields on the nanoscale. Recent experiments show that TMDC-PC hybrids can reach the strong-coupling limit between excitons and plasmons, forming new quasiparticles, so-called plexcitons. To describe this coupling theoretically, we develop a self-consistent Maxwell-Bloch theory for TMDC-PC hybrid structures, which allows us to compute the scattered light in the near- and far-fields explicitly and provide guidance for experimental studies. One of the key findings of the developed theory is the necessity to differentiate between bright and originally momentum-dark excitons. Our calculations reveal a spectral splitting signature of strong coupling of more than 100 meV in gold-MoSe2 structures with 30 nm nanoparticles, manifesting in a hybridization of the plasmon mode with momentum-dark excitons into two effective plexcitonic bands. The semianalytical theory allows us to directly infer the characteristic asymmetric line shape of the hybrid spectra in the strong coupling regime from the energy distribution of the momentum-dark excitons. In addition to the hybridized states, we find a remaining excitonic mode with significantly smaller coupling to the plasmonic near-field, emitting directly into the far-field. Thus, hybrid spectra in the strong coupling regime can contain three emission peaks.
更多
查看译文
关键词
2D semiconductors,transition metal dichalcogenides,excitons,plasmonic crystals,strong coupling,light-matter interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要