Targeted co-delivery of curcumin and erlotinib by MoS2 nanosheets for the combination of synergetic chemotherapy and photothermal therapy of lung cancer

Zhihuai Chen,Xinqi Wei, Yunru Zheng, Zongwei Zhang, Wang Gu,Wenjun Liao, Hua Zhang,Xiaoying Wang,Jian Liu,Hua Li,Wei Xu

Journal of nanobiotechnology(2023)

引用 0|浏览7
暂无评分
摘要
Curcumin (Cur), a bioactive component of Chinese traditional medicine, has demonstrated inhibitory properties against cancer cell proliferation while synergistically enhancing the anticancer efficacy of erlotinib (Er). However, the individual limitations of both drugs, including poor aqueous solubility, lack of targeting ability, short half-life, etc., and their distinct pharmacokinetic profiles mitigate or eliminate their combined antitumor potential. In this study, we developed a molybdenum disulfide (MoS2)-based delivery system, functionalized with polyethylene glycol (PEG) and biotin, and co-loaded with Cur and Er, to achieve efficient cancer therapy. The MoS2-PEG-Biotin-Cur/Er system effectively converted near-infrared (NIR) light into heat, thereby inducing direct photothermal ablation of cancer cells and promoting controlled release of Cur and Er. Biotin-mediated tumor targeting facilitated the selective accumulation of MoS2-PEG-Biotin-Cur/Er at the tumor site, thus enhancing the synergistic antitumor effects of Cur and Er. Remarkably, MoS2-PEG-Biotin-Cur/Er achieved the combination of synergistic chemotherapy and photothermal therapy (PTT) upon NIR irradiation, effectively suppressing lung cancer cell proliferation and inhabiting tumor growth in vivo. The as-synthesized MoS2-PEG-Biotin-Cur/Er, featuring high targeting ability, NIR light-responsive drug release, and the integration of synergistic chemotherapy and PTT, may provide a promising strategy for the treatment of lung cancer in clinical practice.
更多
查看译文
关键词
MoS2 nanosheets, Biotin, NIR light-responsive drug release, Synergistic chemotherapy, Photothermal therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要