VAMP2/Munc18-1 domain 3a interaction controls the nanoscale reorganization underpinning vesicular priming

biorxiv(2023)

引用 0|浏览5
暂无评分
摘要
SNARE-mediated secretory vesicle (SV) exocytosis underpins neuronal communication. Munc18-1 orchestrates SNARE complex formation by controlling the opening of syntaxin-1A. How the SV-plasma membrane interface becomes fusion-competent at the nanoscale level is poorly understood. Here, we propose that the interaction of Munc18-1 with VAMP2 during vesicular docking triggers nanoscale re-organization which renders the SV-plasma membrane interface fusion-competent. We identified and mutated key residues in Munc18-1 domain 3a (A297 and T304) hypothesised to impair its interaction with VAMP2. Munc18-1A297H, and to a lesser extent Munc18-1T304H, constrained SVs on the plasma membrane and reduced stimulated secretion, under re-expression conditions in Munc18-1/2 double knockout neurosecretory cells. Moreover, the de-clustering of Munc18-1 in response to activity was lost for both mutants. The interaction of VAMP2 with the Munc18-1 domain 3a therefore controls the re-organization of the nanoscale environment of the docked SV-plasma membrane interface, fostering syntaxin-1A opening and Munc18-1 release to ensure that SNARE assembly only occurs within the confinement of docked vesicles. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要