Dopaminergic D2 receptor modulation of striatal cholinergic interneurons contributes to sequence learning

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览1
暂无评分
摘要
Learning action sequences is necessary for normal daily activities. Medium spiny neurons (MSNs) in the dorsal striatum (dStr) encode action sequences through changes in firing at the start and/or stop of action sequences or sustained changes in firing throughout the sequence. Acetylcholine (ACh), released from cholinergic interneurons (ChIs), regulates striatal function by modulating MSN and interneuron excitability, dopamine and glutamate release, and synaptic plasticity. Cholinergic neurons in dStr pause their tonic firing during the performance of learned action sequences. Activation of dopamine type-2 receptors (D2Rs) on ChIs is one mechanism of ChI pausing. In this study we show that deleting D2Rs from ChIs by crossing D2-floxed with ChAT-Cre mice (D2Flox-ChATCre), which inhibits dopamine-mediated ChI pausing and leads to deficits in an operant action sequence task and lower breakpoints in a progressive ratio task. These data suggest that D2Flox-ChATCre mice have reduced motivation to work for sucrose reward, but show no generalized motor skill deficits. D2Flox-ChATCre mice perform similarly to controls in a simple reversal learning task, indicating normal behavioral flexibility, a cognitive function associated with ChIs. In vivo electrophysiological recordings show that D2Flox-ChatCre mice have deficits in sequence encoding, with fewer dStr MSNs encoding entire action sequences compared to controls. Thus, ChI D2R deletion appears to impair a neural substrate of action chunking. Virally replacing D2Rs in dStr ChIs in adult mice improves action sequence learning, but not the lower breakpoints, further suggesting that D2Rs on ChIs in the dStr are critical for sequence learning, but not for driving the motivational aspects of the task. Significance statement The role of striatal projection neurons in encoding action sequences has been extensively studied, and cholinergic interneurons play a central role in striatal physiology, but we do not yet understand how cholinergic interneurons contribute to action sequencing. Using a combination of mouse genetics, behavior, and in vivo electrophysiology this work shows that genetic deletion of D2 receptors from striatal cholinergic interneurons disrupts the learning, performance, and encoding of action sequences, without changing general locomotion or motor skill learning. Virally replacing D2 receptors specifically in dorsal striatal cholinergic interneurons is sufficient to rescue the sequence behavior. Our observations may be useful in understanding and treating movement disorders in which dopamine and acetylcholine are imbalanced. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
striatal cholinergic interneurons,dopaminergic d2 receptor modulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要