The CESM2 Single-Forcing Large Ensemble and Comparison to CESM1: Implications for Experimental Design

JOURNAL OF CLIMATE(2023)

引用 2|浏览20
暂无评分
摘要
Single-forcing large ensembles are a relatively new tool for quantifying the contributions of different an-thropogenic and natural forcings to the historical and future projected evolution of the climate system. This study introdu-ces a new single-forcing large ensemble with the Community Earth System Model, version 2 (CESM2), which can be used to separate the influences of greenhouse gases, anthropogenic aerosols, biomass burning aerosols, and all remaining forc-ings on the evolution of the Earth system from 1850 to 2050. Here, the forced responses of global near-surface temperature and associated drivers are examined in CESM2 and compared with those in a single-forcing large ensemble with CESM2's predecessor, CESM1. The experimental design, the imposed forcing, and the model physics all differ between the CESM1 and CESM2 ensembles. In CESM1, an "all-but-one" approach was used whereby everything except the forcing of interest is time evolving, while in CESM2 an "only" approach is used, whereby only the forcing of interest is time evolving. This ex-perimental design choice is shown to matter considerably for anthropogenic aerosol-forced change in CESM2, due to state dependence of cryospheric albedo feedbacks and nonlinearity in the Atlantic meridional overturning circulation (AMOC) response to forcing. This impact of experimental design is, however, strongly dependent on the model physics and/or the imposed forcing, as the same sensitivity to experimental design is not found in CESM1, which appears to be an inherently less nonlinear model in both its AMOC behavior and cryospheric feedbacks.
更多
查看译文
关键词
Climate models, Ensembles, Anthropogenic effects, forcing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要