Exploring Sources and Health Risks in Beijing PM2.5 in 2019 and 2020

ATMOSPHERE(2023)

引用 0|浏览7
暂无评分
摘要
The various industries, sectors, and citizens' daily lives have undergone significant changes after the outbreak of the COVID-19 pandemic. The researchers collected and analyzed PM2.5 samples including secondary inorganic ions (SO42-, NO3-, and NH4+, namely SNA), organic carbon (OC), elemental carbon (EC), and other 16 metal elements in Beijing in 2019 (before the pandemic) and 2020 (after the pandemic). The particulate matter (PM2.5) concentration in the autumn and winter of 2020 is 21.16 & mu;g/m(3) and 14.05 & mu;g/m(3) lower than in 2019, respectively. The contribution of six sources of pollution, including coal combustion, secondary sources, transportation-related sources, dust, Industrial I, and Industrial II, were analyzed using the Positive Matrix Factorization (PMF) model. Due to the impacts of the COVID-19 pandemic, more and more people are choosing private transportation, such as private cars, instead of public transportation. As a result, the contribution of PM2.5 pollution related to transportation increased after the pandemic. The metal elements measured during the sampling period represent only a very small fraction (1%) of PM2.5. However, their health risk to humans cannot be ignored because of the toxicity of some metallic elements, and the carcinogenic risks induced by metal elements in PM2.5 exceeded the safety threshold (>10(-6)) during the autumn and winter of 2019 and 2020. Arsenic (As) contributes the most to carcinogenic risk, so controlling arsenic emissions is the primary approach to reducing cancer risk in Beijing. Considering the contribution to the health risk from various sources obtained in PMF, coal combustion is the most significant contributor to cancer risk. Therefore, serious consideration should be given to controlling coal combustion at the local and regional levels to reduce health risks in Beijing.
更多
查看译文
关键词
toxic elements, health risk assessments, PMF model, traffic-related emissions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要