Do NO, N2O, N2 and N2 fluxes differ in soils sourced from cropland and varying riparian buffer vegetation? An incubation study

J. C. Dlamini, E. H. Tesfamariam, M. Verbeeck, N. Loick, A. Louro-Lopez,J. M. B. Hawkins,M. S. A. Blackwell, R. M. Dunn,A. L. Collins, L. M. Cardenas

SOIL USE AND MANAGEMENT(2024)

引用 0|浏览9
暂无评分
摘要
Riparian buffers are expedient interventions for water quality functions in agricultural landscapes. However, the choice of vegetation and management affects soil microbial communities, which in turn affect nutrient cycling and the production and emission of gases such as nitric oxide (NO), nitrous oxide (N2O), nitrogen gas (N-2) and carbon dioxide (CO2). To investigate the potential fluxes of the above-mentioned gases, soil samples were collected from a cropland and downslope grass, willow and woodland riparian buffers from a replicated plot scale experimental facility. The soils were re-packed into cores and to investigate their potential to produce the aforementioned gases via potential denitrification, a potassium nitrate (KNO3-) and glucose (labile carbon)-containing amendment, was added prior to incubation in a specialized laboratory DENItrification System (DENIS). The resulting NO, N2O, N-2 and CO2 emissions were measured simultaneously, with the most NO (2.9 & PLUSMN; 0.31 mg NO m(-2)) and N2O (1413.4 & PLUSMN; 448.3 mg N2O m(-2)) generated by the grass riparian buffer and the most N-2 (698.1 & PLUSMN; 270.3 mg N-2 m(-2)) and CO2 (27,558.3 & PLUSMN; 128.9 mg CO2 m(-2)) produced by the willow riparian buffer. Thus, the results show that grass riparian buffer soils have a greater NO3- removal capacity, evidenced by their large potential denitrification rates, while the willow riparian buffers may be an effective riparian buffer as its soils potentially promote complete denitrification to N-2, especially in areas with similar conditions to the current study.
更多
查看译文
关键词
denitrification potential,gas fluxes,greenhouse gas emissions,nitrogen cycling,riparian buffers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要