Devignet: High-Resolution Vignetting Removal via a Dual Aggregated Fusion Transformer with Adaptive Channel Expansion

AAAI 2024(2024)

引用 0|浏览3
暂无评分
摘要
Vignetting commonly occurs as a degradation in images resulting from factors such as lens design, improper lens hood usage, and limitations in camera sensors. This degradation affects image details, color accuracy, and presents challenges in computational photography. Existing vignetting removal algorithms predominantly rely on ideal physics assumptions and hand-crafted parameters, resulting in the ineffective removal of irregular vignetting and suboptimal results. Moreover, the substantial lack of real-world vignetting datasets hinders the objective and comprehensive evaluation of vignetting removal. To address these challenges, we present VigSet, a pioneering dataset for vignetting removal. VigSet includes 983 pairs of both vignetting and vignetting-free high-resolution (over 4k) real-world images under various conditions. In addition, We introduce DeVigNet, a novel frequency-aware Transformer architecture designed for vignetting removal. Through the Laplacian Pyramid decomposition, we propose the Dual Aggregated Fusion Transformer to handle global features and remove vignetting in the low-frequency domain. Additionally, we propose the Adaptive Channel Expansion Module to enhance details in the high-frequency domain. The experiments demonstrate that the proposed model outperforms existing state-of-the-art methods. The code, models, and dataset are available at https://github.com/CXH-Research/DeVigNet.
更多
查看译文
关键词
CV: Computational Photography, Image & Video Synthesis,CV: Low Level & Physics-based Vision
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要