Risk-based prediction for optimal timing of booster vaccination for COVID-19 to prevent severe disease

medRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览18
暂无评分
摘要
While waning protection from vaccination and natural infection against SARS-CoV-2 infection is well-documented, recent analyses have also found waning of protection against severe COVID-19. This highlights a broader need to understand the optimal timing of COVID-19 booster vaccines specific to an individual to mitigate the risk of severe COVID-19, while accounting for waning of protection and differential risk by age group and immune status. Here we show that more frequent COVID-19 booster vaccination (every 6-12 months) in older age groups and the immunocompromised population would effectively mitigate the burden of severe COVID-19, while frequent boosters in the younger population may only provide modest benefit. Analyzing United States COVID-19 surveillance and seroprevalence data in a microsimulation model, we estimated that in persons 75+ years, annual and semiannual bivalent boosters would reduce annual absolute risk of severe COVID-19 by 311 (277-369) and 578 (494-671) cases, respectively, compared to a one-time bivalent booster dose. In contrast, for persons 18-49 years, the model estimated that annual and semiannual bivalent boosters would reduce annual absolute risk of severe COVID-19 by 20 (13-26) and 37 (24-50) cases per 100,000 persons, respectively, compared to a one-time bivalent booster dose. Persons with prior infection had a much lower benefit of more frequent boosting, while immunocompromised persons had larger benefit. This study underscores the benefit of customizing timing of COVID-19 booster vaccines based on individual risk. ### Competing Interest Statement The authors have declared no competing interest. ### Funding Statement NCL is supported by the National Institutes of Health, NIAID New Innovator Award (DP2 AI170485). This study is supported by funding from the California Department of Public Health. ### Author Declarations I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained. Yes I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals. Yes I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance). Yes I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable. Yes All analytic code and relevent data are available at [https://github.com/hailey-park/booster-timing].
更多
查看译文
关键词
booster vaccination,prediction,optimal timing,risk-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要