Shear localization behavior in hat-shaped specimen of near-α Ti−6Al−2Zr−1Mo−1V titanium alloy loaded at high strain rate

Transactions of Nonferrous Metals Society of China(2021)

引用 0|浏览0
暂无评分
摘要
The microstructure characteristics in early stage shear localization of near-α Ti−6Al−2Zr−1Mo−1V titanium alloy were investigated by split Hopkinson pressure bar (SHPB) tests using hat-shaped specimens. The microstructural evolution and deformation mechanisms of hat-shaped specimens were revealed by electron backscattered diffraction (EBSD) method. It is found that the nucleation and expansion of adiabatic shear band (ASB) are affected by both geometric and structural factors. The increase of dislocation density, structure fragment and temperature rise in the deformation-affected regions provide basic microstructural conditions. In addition to the dislocation slips, the extension twins detected in shear region also play a critical role in microstructural fragmentation due to twin-boundaries effect. Interestingly, the sandwich structure imposes a crucial influence on ASB, which finally becomes a mature wide ASB in the dynamic deformation. However, due to much larger width, the sandwich structure in the middle of shear region is also possible to serve as favorable nucleation sites for crack initiation.
更多
查看译文
关键词
Ti−6Al−2Zr−1Mo−1V alloy,adiabatic shear band,split Hopkinson pressure bar,hat-shaped specimen,sandwich structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要