Thiol-Responsive Polypeptide Sulfur Dioxide Prodrug Nanoparticles for Effective Tumor Inhibition

BIOMACROMOLECULES(2023)

引用 1|浏览2
暂无评分
摘要
Sulfur dioxide (SO2) based gas therapy has emerged as a novel anticancer therapeutic strategy because of its high therapeutic efficacy and biosafety. To precisely adjust the SO2 content and control gas release, herein, a thiol-responsive polypeptide SO2 prodrug mPEG-block-poly-(2-amino-6-(2,4-dinitrophenylsulfonamido)-hexanoic acid) (PEG-b-PLys-DNs) was designed and facilely synthesized by polymerization of a novel N-carboxyanhydride SO2-NCA. The anticancer potential of the self-assembled nanoparticles (SO2-NPs) was investigated in detail. First, PEG-b-PLys-DNs were synthesized by ring-opening polymerization of SO2-NCA, which self-assembled into NPs sized 88.4 nm in aqueous. Subsequently, SO2-NPs were endocytosed into 4T1 cells and quickly released SO2 under a high concentration of glutathione in tumor cells. This process depleted cellular glutathione, generated reactive oxygen species, and dramatically increased oxidative stress, which led to cancer cell apoptosis. Finally, the in vivo anticancer efficacy of SO2-NPs was verified in 4T1-tumor-bearing mice. Our results indicated that this novel SO(2 )polymeric prodrug has great potential in eradicating tumors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要