Stability of a quantum skyrmion: Projective measurements and the quantum Zeno effect

PHYSICAL REVIEW B(2024)

引用 0|浏览3
暂无评分
摘要
Magnetic skyrmions are vortexlike quasiparticles characterized by long lifetime and remarkable topological properties. That makes them a promising candidate for the role of information carriers in magnetic information storage and processing devices. Although considerable progress has been made in studying skyrmions in classical systems, little is known about the quantum case: quantum skyrmions cannot be directly observed by probing the local magnetization of the system, and the notion of topological protection is elusive in the quantum realm. Here we explore the potential robustness of quantum skyrmions in comparison to their classical counterparts. We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements and demonstrate that the properties of the skyrmionic quantum state change very little upon external perturbations. We further show that by performing repetitive measurements on a quantum skyrmion, it can be completely stabilized through an analog of the quantum Zeno effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要