Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler.

Royal Society open science(2023)

引用 0|浏览0
暂无评分
摘要
In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical problems, only data at the aggregate level is available and as a result the likelihood function is not available, which poses a challenge for Bayesian methods. In particular, we consider the situation where the distributions of the particles are observed. We propose a Wasserstein distance (WD)-based sequential Monte Carlo sampler to solve the problem: the WD is used to measure the similarity between the observed and the simulated particle distributions and the sequential Monte Carlo samplers is used to deal with the sequentially available observations. Two real-world examples are provided to demonstrate the performance of the proposed method.
更多
查看译文
关键词
wasserstein distance,aggregate observations,estimation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要