Dual Lewis Acid-Base Sites Regulate Silver-Copper Bimetallic Oxide Nanowires for Highly Selective Photoreduction of Carbon Dioxide to Methane.

Angewandte Chemie (International ed. in English)(2023)

引用 0|浏览7
暂无评分
摘要
Highly selective photoreduction of CO2 to valuable hydrocarbons is of great importance to achieving a carbon-neutral society. Precisely manipulating the formation of the Metal1 ⋅⋅⋅C=O⋅⋅⋅Metal2 (M1 ⋅⋅⋅C=O⋅⋅⋅M2 ) intermediate on the photocatalyst interface is the most critical step for regulating selectivity, while still a significant challenge. Herein, inspired by the polar electronic structure feature of CO2 molecule, we propose a strategy whereby the Lewis acid-base dual sites confined in a bimetallic catalyst surface are conducive to forming a M1 ⋅⋅⋅C=O⋅⋅⋅M2 intermediate precisely, which can promote selectivity to hydrocarbon formation. Employing the Ag2 Cu2 O3 nanowires with abundant Cu⋅⋅⋅Ag Lewis acid-base dual sites on the preferred exposed {110} surface as a model catalyst, 100 % selectivity toward photoreduction of CO2 into CH4 has been achieved. Subsequent surface-quenching experiments and density functional theory (DFT) calculations verify that the Cu⋅⋅⋅Ag Lewis acid-base dual sites do play a vital role in regulating the M1 ⋅⋅⋅C=O⋅⋅⋅M2 intermediate formation that is considered to be prone to convert CO2 into hydrocarbons. This study reports a highly selective CO2 photocatalyst, which was designed on the basis of a newly proposed theory for precise regulation of reaction intermediates. Our findings will stimulate further research on dual-site catalyst design for CO2 reduction to hydrocarbons.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要