Memristors based on NdNiO3 nanocrystals film as sensory neurons for neuromorphic computing

Materials horizons(2023)

引用 0|浏览6
暂无评分
摘要
By mimicking the behavior of the human brain, artificial neural systems offer the possibility to further improve computing efficiency and solve the von Neumann bottleneck. In particular, neural systems with perceptual capability expand the application field and lay a good foundation for the construction of perceptual storage and computational systems. However, research on neurons with perceptual functions is still relatively scarce, with most works focusing on optoelectronic synapses. The neuron is important for neuromorphic computing systems because neurons output excitatory or inhibitory stimuli to regulate the weight of synapses. Therefore, the construction of sensory neurons is crucial to expand the application range of brain-like neural computing. Here, an artificial sensory neuron is proposed, which is constructed using a photosensitive bipolar threshold switching memristor based on NdNiO3 (NNO) nanocrystals. These metallic phase nanocrystals can not only enhance the local electric field, but also act as a reservoir for defects (VoS) to guide the growth of conductive filaments and stabilize the performance of the device. They present stable bipolar threshold switching behavior with a low 120 nW set power, and the operating voltages decreased in light due to photocarrier action. A leaky integrate firing (LIF) neuron has been realized, which achieved key biological neuron functions, such as all-or-nothing spiking, threshold-driven firing, refractory period, and spiking frequency modulation. The LIF neurons receiving optical inputs have the properties of an artificial sensory neuron. It could regulate the spiking output frequency at different light densities, which could be used for a ship approaching a port. This work provides a promising hardware implementation towards constructing high-performance artificial intelligence to assist ships at night in a sensory system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要