Soft robotics-enabled large animal model of HFpEF hemodynamics for device testing.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览13
暂无评分
摘要
Heart failure with preserved ejection fraction (HFpEF) is a major challenge in cardiovascular medicine, accounting for approximately 50% of all cases of heart failure. Due to the lack of effective therapies for this condition, the mortality associated with HFpEF remains higher than that of most cancers. Despite the ongoing efforts, no medical device has yet received FDA approval. This is largely due to the lack of an in vivo model of the HFpEF hemodynamics, resulting in the inability to evaluate device effectiveness in vivo prior to clinical trials. Here, we describe the development of a highly tunable porcine model of HFpEF hemodynamics using implantable soft robotic sleeves, where controlled actuation of a left ventricular and an aortic sleeve can recapitulate changes in ventricular compliance and afterload associated with a broad spectrum of HFpEF hemodynamic phenotypes. We demonstrate the feasibility of the proposed model in preclinical testing by evaluating the hemodynamic response of the model post-implantation of an interatrial shunt device, which was found to be consistent with findings from in silico studies and clinical trials. This work addresses several of the limitations associated with previous models of HFpEF, such as their limited hemodynamic fidelity, elevated costs, lengthy development time, and low throughput. By showcasing exceptional versatility and tunability, the proposed platform has the potential to revolutionize the current approach for HFpEF device development and selection, with the goal of improving the quality of life for the 32 million people affected by HFpEF worldwide.
更多
查看译文
关键词
hfpef hemodynamics,animal model,large animal model,device testing,robotics-enabled
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要