Magnetic dipole operator from chiral effective field theory for many-body expansion methods

R. Seutin,O. J. Hernandez, T. Miyagi,S. Bacca,K. Hebeler, S. Koenig,A. Schwenk

PHYSICAL REVIEW C(2023)

引用 0|浏览0
暂无评分
摘要
Many-body approaches for atomic nuclei generally rely on a basis expansion of the nuclear states, interactions, and current operators. In this work, we derive the representation of the magnetic dipole operator in plane-wave and harmonic-oscillator basis states, as needed for Faddeev calculations of few-body systems or many-body calculations within, e.g., the no-core shell model, the in-medium similarity renormalization group, coupled-cluster theory, or the nuclear shell model. We focus in particular on the next-to-leading-order two-body contributions derived from chiral effective field theory. We provide detailed benchmarks and also comparisons with quantum Monte Carlo results for three-body systems. The derived operator matrix elements represent the basic input for studying magnetic properties of atomic nuclei based on chiral effective field theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要