Characterization of pedestrian contact interaction trajectories

ICCS (1)(2024)

引用 0|浏览8
暂无评分
摘要
A spreading process can be observed when a particular behavior, substance, or disease spreads through a population over time in social and biological systems. It is widely believed that contact interactions among individual entities play an essential role in the spreading process. Although the contact interactions are often influenced by geometrical conditions, little attention has been paid to understand their effects especially on contact duration among pedestrians. To examine how the pedestrian flow setups affect contact duration distribution, we have analyzed trajectories of pedestrians in contact interactions collected from pedestrian flow experiments of uni-, bi- and multi-directional setups. Based on standardized maximal distance, we have classified types of motions observed in the contact interactions. We have found that almost all motion in the unidirectional flow setup can be characterized as subdiffusive motion, suggesting that the empirically measured contact duration tends to be longer than one estimated by ballistic motion assumption. However, Brownian motion is more frequently observed from other flow setups, indicating that the contact duration estimated by ballistic motion assumption shows good agreement with the empirically measured one. Furthermore, when the difference in relative speed distributions between the experimental data and ballistic motion assumption is larger, more subdiffusive motions are observed. This study also has practical implications. For instance, it highlights that geometrical conditions yielding smaller difference in the relative speed distributions are preferred when diseases can be transmitted through face-to-face interactions.
更多
查看译文
关键词
interaction,contact
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要