Ternary XBe4H5- (X = Si, Ge, Sn, Pb) Clusters: Planar Tetracoordinate Si/Ge/Sn/Pb Species with 18 Valence Electrons

Molecules (Basel, Switzerland)(2023)

引用 0|浏览0
暂无评分
摘要
As one of the important probes of chemical bonding, planar tetracoordinate carbon (ptC) compounds have been receiving much attention. Compared with ptC clusters, the heavier planar tetracoordinate silicon, germanium, tin, lead (ptSi/Ge/Sn/Pb) systems are scarcer and more exotic. The 18-valence-electron (ve)-counting is one important guide, though not the only rule, for the design of planar tetra-, penta-coordinate carbon and silicon clusters. The 18ve ptSi/Ge system is very scarce and needs to be expanded. Based on the isoelectronic principle and bonding similarity between the Al atom and the BeH unit, inspired by the previously reported ptSi global minimum (GM) SiAl42-, a series of ternary 18 ve XBe4H5(-) (X = Si, Ge, Sn, Pb) clusters were predicted with the ptSi/Ge/Sn/Pb centers. Extensive density functional theory (DFT) global minimum searches and high-level CCSD(T) calculations performed herein indicated that these ptSi/Ge/Sn/Pb XBe4H5- (X = Si, Ge, Sn, Pb) clusters were all true GMs on their potential energy surfaces. These GMs of XBe4H5- (X = Si, Ge, Sn, Pb) species possessed the beautiful fan-shaped structures: XBe4 unit can be stabilized by three peripheries bridging H and two terminal H atoms. It should be noted that XBe4H5- (X = Si, Ge, Sn, Pb) were the first ternary 18 ve ptSi/Ge/Sn/Pb species. The natural bond orbital (NBO), canonical molecular orbitals (CMOs) and adaptive natural densitpartitioning (AdNDP) analyses indicated that 18ve are ideal for these ptX clusters: delocalized one & pi; and three & sigma; bonds for the XBe4 core, three Be-H-Be 3c-2e and two Be-H & sigma; bonds for the periphery. Additionally, 2 & pi; plus 6 & sigma; double aromaticity was found to be crucial for the stability of the ptX XBe4H5- (X = Si, Ge, Sn, Pb) clusters. The simulated photoelectron spectra of XBe4H5- (X = Si, Ge, Sn, Pb) clusters will provide theoretical basis for further experimental characterization.
更多
查看译文
关键词
planar tetracoordinate silicon, planar tetracoordinate germanium, 18-vanlence-electron counting, double aromaticity, stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要