Overexpression of Brassica napus COMT1 in Arabidopsis heightens UV-B-mediated resistance to Plutella xylostella herbivory

Photochemical & Photobiological Sciences(2023)

引用 0|浏览5
暂无评分
摘要
UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae , Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3–2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella. Graphical abstract
更多
查看译文
关键词
Arabidopsis,Brassica napus,COMT1,Plutella xylostella,UV-B
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要