Efficacy of redox nanoparticles for improving survival of transplanted cells in a mouse model of ischemic stroke

Human cell(2023)

引用 0|浏览7
暂无评分
摘要
The success of cell transplantation therapy for ischemic stroke is hindered by the low cell survival rate in poststroke brain, due in part to high free radical production and ensuing oxidative stress. We have developed redox nanoparticles to eliminate reactive oxygen species. In this study, we tested the protective efficacy of these redox nanoparticles in cell culture and a mouse model of ischemic stroke. Induced human dental pulp stem cells were subjected to oxygen–glucose deprivation and reoxygenation to recapitulate ischemia and reperfusion in the penumbra surrounding a cerebral infarct. Cell viability using WST-8 assay, apoptosis using TUNEL, free radicals using MitoSOX, and inflammatory cytokines using ELISA kit were measured in the presence and absence of redox nanoparticles after oxygen–glucose deprivation and reoxygenation. The scavenging activity of redox nanoparticles against reactive oxygen species was detected by electron spin resonance. Moreover, induced cells were transplanted intracerebrally into to the distal middle cerebral artery occlusion model with and without redox nanoparticles, and the survival rate measured. Cell viability was enhanced, while apoptosis, free radical generation, and inflammatory cytokine expression levels were reduced in cultures with redox nanoparticles. Further, reduced redox nanoparticles were detected in the cytoplasm, indicating free radical scavenging. Addition of redox nanoparticles also improved the survival rate of transplanted cells after 6 weeks in vivo. These redox nanoparticles may increase the applicability and success of induced stem cell therapy for ischemic stroke patents by promoting long-term survival.
更多
查看译文
关键词
redox nanoparticles,ischemic stroke,transplanted cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要