Beyond UPR: cell-specific roles of ER stress sensor IRE1α in kidney ischemic injury and transplant rejection

Kidney International(2023)

引用 0|浏览3
暂无评分
摘要
Kidney damage due to ischemia or rejection results in the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER) lumen, a condition known as "ER stress." Inositol-requiring enzyme 1α (IRE1α), the first ER stress sensor found, is a type I transmembrane protein with kinase and endoribonuclease activity. On activation, IRE1α nonconventionally splices an intron from unspliced X-box-binding protein 1 (XBP1) mRNA to produce XBP1s mRNA that encodes the transcription factor, XBP1s, for the expression of genes encoding proteins that mediate the unfolded protein response. The unfolded protein response promotes the functional fidelity of ER and is required for secretory cells to sustain protein folding and secretory capability. Prolonged ER stress can lead to apoptosis, which may result in detrimental repercussions to organ health and has been implicated in the pathogenesis and progression of kidney diseases. The IRE1α-XBP1 signaling acts as a major arm of unfolded protein response and is involved in regulating autophagy, cell differentiation, and cell death. IRE1α also interacts with activator protein-1 and nuclear factor-κB pathways to regulate inflammatory responses. Studies using transgenic mouse models highlight that the roles of IRE1α differ depending on cell type and disease setting. This review covers these cell-specific roles of IRE1α signaling and the potential for therapeutic targeting of this pathway in the context of ischemia and rejection affecting the kidneys.
更多
查看译文
关键词
acute kidney injury,cell signaling,cell survival,endoplasmic reticulum,transplantation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要